Reworded text:
Let CBVE be a cyclic kite, CV being a diameter of its circumcircle. Take F, G onto VE, BE so that FG||BV, call K the midpoint of BG. Prove that KF_|_CK.
Proof:
FG=FB; construct the parallelogram GCBL, we need to prove FL=FC. We have GL=BC=CE, FG||BV, GL||BC, so FG_|_GL. Triangles FGL and FEC are congruent, thus FL=FC, so the median FK is perpendicular bisector of CL as well, done.
Niciun comentariu:
Trimiteți un comentariu