Persoane interesate

vineri, 9 iulie 2021

Geometria Top, Eslam Alenani, https://www.facebook.com/photo?fbid=3047188738897926&set=gm.1003076040462765

 In the interior of the square ABCD there is a point P so that <PAD=x, <CDP=45+x. Find ratio DP/AP.

Proof
Clearly <ADP=45-x, so <ADP+<PAD=45, that is, DP passes midpoint E of the outer arc AB of the circle (AB). If F is midpoint of CD, tan(<DEF)=DF/EF=1/3, i.e tan(<DAP)=1/2, that is, A-P-F are collinear. Notice that triangles DAF and PBA are similar, i.e. PB=2AP. Finally notice that triangles DAP and BDP are similar, i.e. AP/PD=PD/PB, hence PD.PD=AP.PB=AP.2AP wherefrom PD=APsqrt(2).


Niciun comentariu:

Trimiteți un comentariu

From fb page of Nelson Tunala